

UG CBCS Semester-1

Phylum: Molusca

Mollusks are the second-largest phylum of animals in terms of named species; mollusks exhibit a variety of body forms and live in many different environments. Mollusks (phylum Mollusca) are an extremely diverse animal phylum, second only to the arthropods, with over 110,000 described species. Mollusks include snails, slugs, clams, scallops, oysters, cuttlefish, octopuses, and many other familiar animals. The durable shells of some mollusks are often beautiful and elegant; they have long been favorite objects for professional scientists and amateurs alike to collect, preserve, and study. Chitons and nudibranchs are less familiar marine mollusks. Mollusks are characterized by a coelom, and while there is extraordinary diversity in this phylum. Mollusks evolved in the oceans, and most groups have remained there. Marine mollusks are widespread and often abundant. Some groups of mollusks have invaded freshwater and terrestrial habitats, including the snails and slugs that live in your garden. Terrestrial mollusks are often abundant in places that are at least seasonally moist. Some of these places, such as the crevices of desert rocks, may appear very dry, but even these habitats have at least a temporary supply of water at certain times. There are so many terrestrial mollusks that only the arthropods have more species adapted to a terrestrial way of life. The 35,000 species of terrestrial mollusks far outnumber the roughly 20,000 species of terrestrial vertebrates. As a group, mollusks are an important source of food for humans. Oysters, clams, scallops, mussels, octopuses, and squids are among the culinary delicacies that belong to this large phylum. Mollusks are also of economic significance to us in many other ways. For example, pearls are produced in oysters, and the material called mother-of-pearl, often used in jewelry and other decorative objects, is produced in the shells of a number of different mollusks, but most notably in the snail called abalone. Mollusks are not wholly beneficial to humans, however. Bivalve mollusks called shipworms burrow through wood submerged in the sea, damaging boats, docks, and pilings. The zebra mussel has recently invaded North American ecosystems from Europe via the ballast water of cargo ships from Europe, wreaking havoc in many aquatic ecosystems. Slugs and terrestrial snails often cause extensive damage to garden flowers, vegetables, and crops. Other mollusks serve as hosts to the intermediate stages of many serious parasites, including several nematodes and flatworms.

Mollusks range in size from almost microscopic to huge, although most measure a few centimeters in their largest dimension.

Some, however, are minute, while others reach formidable sizes. The giant squid, which is occasionally cast ashore but has rarely been observed in its natural environment, may grow up to 21 meters long! Weighing up to 250 kilograms, the giant squid is the largest invertebrate and, along with the giant clam, the heaviest. Millions of giant squid probably inhabit the deep regions of the ocean, even though they are seldom caught. Another large mollusk is the bivalve *Tridacna maxima*, the giant clam, which may be as long as 1.5 meters and may weigh as much as 270 kilograms.

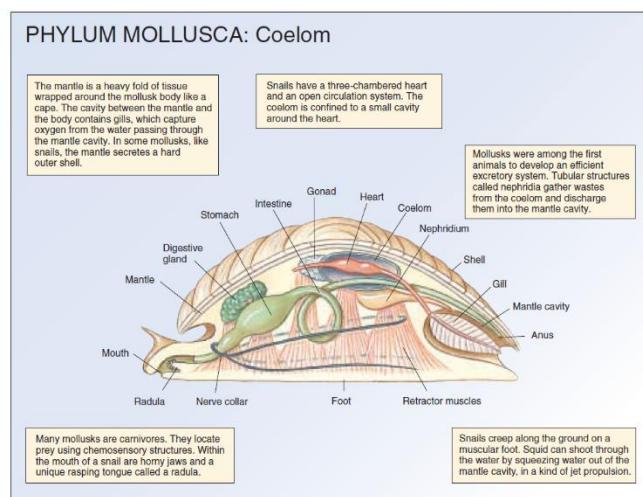


FIGURE 45.3
Evolution of the coelom. A generalized mollusk body plan is shown above. The body cavity of a mollusk is a coelom, which is completely enclosed within the mesoderm. This allows physical contact between the mesoderm and the endoderm, permitting interactions that lead to development of highly specialized organs such as a stomach.

Body Plan of the Mollusks

In their basic body plan, mollusks have distinct bilateral symmetry. Their digestive, excretory, and reproductive organs are concentrated in a **visceral mass**, and a muscular **foot** is their primary mechanism of locomotion. They may also have a differentiated **head** at the anterior end of the body. Folds (often two) arise from the dorsal body wall and enclose a cavity between themselves and the visceral mass; these folds constitute the **mantle**. In some mollusks the mantle cavity acts as a lung; in others it contains gills. **Gills** are specialized portions of the mantle that usually consist of a system of filamentous projections rich in blood vessels. These projections greatly increase the surface area available for gas exchange and, therefore, the animal's overall respiratory potential. Mollusk gills are very efficient, and many gilled mollusks extract 50% or more of the dissolved oxygen from the water that passes through the mantle cavity. Finally, in most members of this phylum, the outer surface of the mantle also secretes a protective shell. A mollusk shell consists of a horny outer layer, rich in protein, which protects the two-underlying calcium-rich layers from erosion. The middle layer consists of densely packed crystals of calcium carbonate. The inner layer is pearly and increases in thickness throughout the animal's life. When it reaches a sufficient thickness, this layer is used as mother-of-pearl. Pearls themselves are formed when a foreign object, like a grain of sand, becomes lodged between the mantle and the inner shell layer of **bivalve mollusks** (two-shelled), including clams and oysters. The mantle coats the foreign object with layer upon layer of shell material to reduce irritation caused by the object. The shell of mollusks serves primarily for protection.

Many species can withdraw for protection into their shell if they have one. In aquatic mollusks, a continuous stream of water passes into and out of the mantle cavity, drawn by the cilia on the gills. This water brings in oxygen and, in the case of the bivalves, also brings in food; it also carries out waste materials. When the gametes are being produced, they are frequently carried out in the same stream.

The foot of a mollusk is muscular and may be adapted for locomotion, attachment, food capture (in squids and octopuses), or various combinations of these functions. Some mollusks secrete mucus, forming a path that they glide along on their foot. In cephalopods—squids and octopuses—the foot is divided into arms, also called tentacles.

In some *pelagic* forms, mollusks that are perpetually free-swimming, the foot is modified into wing-like projections or thin fins. One of the most characteristic features of all the mollusks except the bivalves is the **radula**, a rasping, tongue like organ used for feeding. The radula consists primarily of dozens to thousands of microscopic, chitinous teeth arranged in rows. Gastropods (snails and their relatives) use their radula to scrape algae and other food materials off their substrates and then to convey this food to the digestive tract. Other gastropods are active predators, some using a modified radula to drill through the shells of prey and extract the food. The small holes often seen in oyster shells are produced by gastropods that have bored holes to kill the oyster and extract its body for food. The circulatory system of all mollusks except cephalopods consists of a heart and an open system in which blood circulates freely.

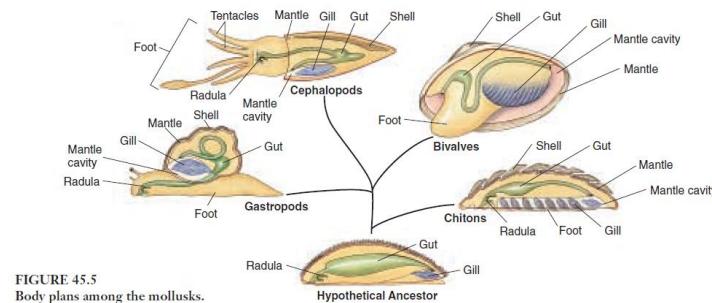


FIGURE 45.5
Body plans among the mollusks.

The mollusk heart usually has three chambers, two that collect aerated blood from the gills, while the third pumps it to the other body tissues. In mollusks, the coelom takes the form of a small cavity around the heart.

Nitrogenous wastes are removed from the mollusk by one or two tubular structures called **nephridia**. A typical nephridium has an open funnel, the **nephrostome**, which is lined with cilia. A coiled tubule runs from the nephrostome into a bladder, which in turn connects to an excretory pore. Wastes are gathered by the nephridia from the coelom and discharged into the mantle cavity. The wastes are then expelled from the mantle cavity by the continuous pumping of the gills. Sugars, salts, water, and other materials are reabsorbed by the walls of the nephridia and returned to the animal's body as needed to achieve an appropriate osmotic balance.

In animals with a closed circulatory system, such as annelids, cephalopod mollusks, and vertebrates, the coiled tubule of a nephridium is surrounded by a network of capillaries. Wastes are extracted from the circulatory system through these capillaries and are transferred into the nephridium, then subsequently discharged. Salts, water, and other associated materials may also be reabsorbed from the tubule of the nephridium back into the capillaries. For this reason, the excretory systems of these coelomates are much more efficient than the flame cells of the acoelomates, which pick up substances only from the body fluids. Mollusks were one of the earliest evolutionary lines to develop an efficient excretory system. Other than chordates, coelomates with closed circulation have similar excretory systems.

Reproduction in Mollusks

Most mollusks have distinct male and female individuals, although a few bivalves and many gastropods are hermaphroditic. Even in hermaphroditic mollusks, cross-fertilization is most common. Remarkably, some sea slugs and oysters are able to change from one sex to the other several times during a single season.

Most aquatic mollusks engage in external fertilization. The males and females release their gametes into the water, where they mix and fertilization occurs. Gastropods more often have internal fertilization, however, with the male inserting sperm directly into the female's body. Internal fertilization is one of the key adaptations that allowed gastropods to colonize the land.

Many marine mollusks have free-swimming larvae called **trochophores**, which closely resemble the larval stage of many marine annelids. Trochophores swim by means of a row of cilia that encircles the middle of their body. In most marine snails and in bivalves, a second free-swimming stage, the veliger, follows the trochophore stage. This **veliger** stage, has the beginnings of a foot, shell, and mantle. Trochophores and veligers drift widely in the ocean currents, dispersing mollusks to new areas.

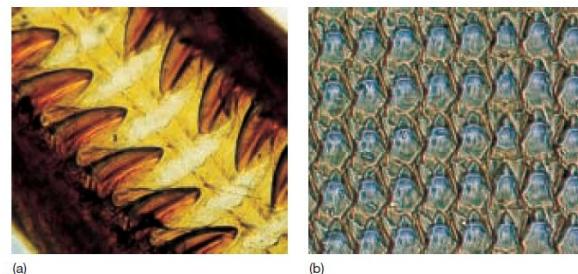


FIGURE 45.6
Structure of the radula in a snail. (a) The radula consists of chitin and is covered with rows of teeth. (b) Enlargement of the rasping teeth on a radula.

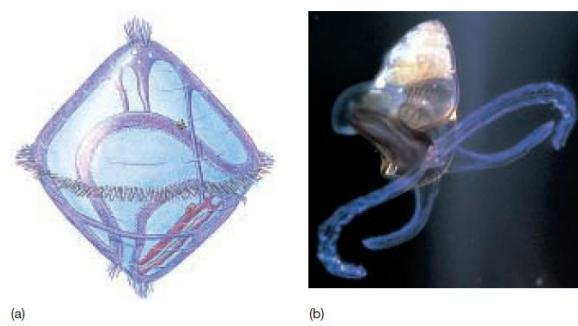


FIGURE 45.7
Stages in the molluscan life cycle. (a) The trochophore larva of a mollusk. Similar larvae, as you will see, are characteristic of some annelid worms as well as a few other phyla. (b) Veliger stage of a mollusk.

The Classes of Mollusks

There are seven classes of mollusks. We will examine four classes of mollusks as representatives of the phylum: (1) Polyplacophora—chitons; (2) Gastropoda—snails, slugs, limpets, and their relatives; (3) Bivalvia—clams, oysters, scallops, and their relatives; and (4) Cephalopoda—squids, octopuses, cuttlefishes, and nautilus. By studying living mollusks and the fossil record, some scientists have deduced that the ancestral mollusk was probably a dorsoventrally flattened, unsegmented, wormlike animal that glided on its ventral surface. This animal may also have had a chitinous cuticle and overlapping calcareous scales. Other scientists believe that mollusks arose from segmented ancestors and became unsegmented secondarily.

Class Polyplacophora: The Chitons

Chitons are marine mollusks that have oval bodies with eight overlapping calcareous plates. Underneath the plates, the body is not segmented. Chitons creep along using a broad, flat foot surrounded by a groove or mantle cavity in which the gills are arranged. Most chitons are grazing herbivores that live in shallow marine habitats, but some live at depths of more than 7000 meters.

Class Gastropoda: The Snails and Slugs

The class Gastropoda contains about 40,000 described species of snails, slugs, and similar animals. This class is primarily a marine group, but it also contains many freshwater and terrestrial mollusks. Most gastropods have a shell, but some, like slugs and nudibranchs, have lost their shells through the course of evolution. Gastropods generally creep along on a foot, which may be modified for swimming. The heads of most gastropods have a pair of tentacles with eyes at the ends. These tentacles have been lost in some of the more advanced forms of the class. Within the mouth cavity of many members of this class are horny jaws and a radula.

During embryological development, gastropods undergo **torsion**. Torsion is the process by which the mantle cavity and anus are moved from a posterior location to the front of the body, where the mouth is located. Torsion is brought about by a disproportionate growth of the lateral muscles; that is, one side of the larva grows much more rapidly than the other. A 120-degree rotation of the visceral mass brings the mantle cavity above the head and twists many internal structures. In some groups of gastropods, varying degrees of detorsion have taken place. The **coiling**, or spiral winding, of the shell is a separate process. This process has led to the loss of the right gill and right nephridium in most gastropods. Thus, the visceral mass of gastropods has become bilaterally asymmetrical during the course of evolution.

Gastropods display extremely varied feeding habits. Some are predatory, others scrape algae off rocks (or aquarium glass), and others are scavengers. Many are herbivores, and some terrestrial ones are serious garden and agricultural pests. The radula of oyster drills is used to bore holes in the shells of other mollusks, through which the contents of the prey can be removed. In cone shells, the radula has been modified into a kind of poisonous harpoon, which is shot with great speed into the prey.

FIGURE 45.8
A gastropod mollusk. The terrestrial snail, *Allogona townsendiana*.

Class Bivalvia: The Bivalves

Members of the class Bivalvia include the clams, scallops, mussels, and oysters. Bivalves have two lateral (left and right) shells (valves) hinged together dorsally. A ligament hinges the shells together and causes them to gape open. Pulling against this ligament are one or two large adductor muscles that can draw the shells together. The mantle is frequently drawn out to form two siphons, one for an incoming and one for an outgoing stream of water. The siphons often function as snorkels to allow bivalves to filter water through their body while remaining almost completely buried in sediments. A complex folded gill lies on each side of the visceral mass. These gills consist of pairs of filaments that contain many blood vessels. Rhythmic beating of cilia on the gills creates a pattern of water circulation. Most bivalves are sessile filter-feeders. They extract small organisms from the water that passes through their mantle cavity.

Bivalves do not have distinct heads or radulas, differing from gastropods in this respect. However, most have a wedge-shaped foot that may be adapted, in different species, for creeping, burrowing, cleansing the animal, or anchoring it in its burrow. Some species of clams can dig into sand or mud very rapidly by means of muscular contractions of their foot. Bivalves disperse from place to place largely as larvae. While most adults are adapted to a burrowing way of life, some genera of scallops can move swiftly through the water by using their large adductor muscles to clap their shells together. These muscles are what we usually eat as “scallops.” The edge of a scallop’s body is lined with tentacle-like projections tipped with complex eyes. There are about 10,000 species of bivalves. Most species are marine, although many also live in fresh water.

FIGURE 45.9
A bivalve. The file shell, *Lima scabra*, opened, showing tentacles.

Class Cephalopoda: The Octopuses, Squids, and Nautilus

The more than 600 species of the class Cephalopoda—octopuses, squids, and nautilus—are the most intelligent of the invertebrates. They are active marine predators that swim, often swiftly, and compete successfully with fish. The foot has evolved into a series of tentacles equipped with suction cups, adhesive structures, or hooks that seize prey efficiently. Squids have 10 tentacles; octopuses, as indicated by their name, have eight; and the nautilus, about 80 to 90. Once the tentacles have snared the prey, it is bitten with strong, beaklike paired jaws and pulled into the mouth by the tongue like action of the radula.

Cephalopods have highly developed nervous systems, and their brains are unique among mollusks. Their eyes are very elaborate, and have a structure much like that of vertebrate eyes, although they evolved separately. Many cephalopods exhibit complex patterns of behavior and a high level of intelligence; octopuses can be easily trained to distinguish among classes of objects. Most members of this class have closed circulatory systems and are the only mollusks that do. Although they evolved from shelled ancestors, living cephalopods, except for the few species of nautilus, lack an external shell. Like other mollusks, cephalopods take water into the mantle cavity and expel it through a siphon. Cephalopods have modified this system into a means of jet propulsion.

FIGURE 45.10
A cephalopod. Squids are active predators, competing effectively with fish for prey.